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Topology of vibrational modes predicts
plastic events in glasses

Zhen Wei Wu 1,2 , Yixiao Chen3, Wei-Hua Wang 4, Walter Kob 5 &
Limei Xu2,6,7

The plastic deformation of crystalline materials can be understood by con-
sidering their structural defects such as disclinations and dislocations.
Although also glasses are solids, their structure resembles closely the one of a
liquid and hence the concept of structural defects becomes ill-defined. As a
consequence it is very challenging to rationalize on a microscopic level the
mechanical properties of glasses close to the yielding point and to relate
plastic events to structural properties. Here we investigate the topological
characteristics of the eigenvector field of the vibrational excitations of a two-
dimensional glass model, notably the geometric arrangement of the topolo-
gical defects as a function of vibrational frequency.We find that if the system is
subjected to a quasistatic shear, the location of the resulting plastic events
correlate strongly with the topological defects that have a negative charge.
Our results provide thus a direct link between the structure of glasses prior
their deformation and the plastic events during deformation.

The structural disorder of glasses allows them to have a multitude of
properties that are absent in crystals but which can be exploited in
many technical applications1–4. The downside of this disorder is that it
has hindered us to come up with a reliable microscopic description of
many of these features since at present we lack a solid understanding
how the atoms are arranged on the level of the particles2. Prominent
examples of these properties are the specific heat and the electric
conductivity of glasses at low temperatures5,6, or the plastic defor-
mation of the solid upon applied load before the yielding point7. While
in crystals dislocations and disclinations allow to rationalize plastic
deformation8, the structural disorder of glasses makes it impossible to
come upwith a reasonable definition of a defect and as a consequence
it becomes very challenging to establish a connection between the
local structure and the yielding of the sample, despite a multitude of
efforts9–16. Although the local structure of systems composed of par-
ticles that have amesoscopic size (colloids, granular systems,...) can be
determined on the level of the particles14,17,18, the mechanical proper-
ties of such materials are dominated by particle-interactions that are

mainly of excluded volume type, i.e., very different from the ionic or
covalent interactions found in atomic systems. As a consequence our
understanding on how the local structure and interactions affect the
mechanical properties of materials like metallic or oxide glasses is far
from being satisfactory, despite the long history of research on this
topic19.

Early studies on this question showed that for simple model sys-
tems an increasing strain leads to a destabilization of the local packing
and results in a strain activated, instead of thermally activated, stress
relaxation20, a picture that was elaborated by Falk and Langer who
introduced the notion of shear transformation zones (STZ)9. Many
subsequent studies have related these STZ and the plastic events (PE)
to structural quantities, a high local entropy, and the local specific
heat, indicating that this concept is useful10,12,14,18,21–24.

By probing the local yield stress in the glass, Patinet et al. showed
that the zones in which the local yield stress is weak correlate well with
the spots at which the globally sheared sample shows a plastic
event13,25. In particular, it was found that this purely local measure
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shows a higher predictive power for identifying sites of plastic activity
than the structural properties considered so far, thus demonstrating
that PE can be predicted from local information and that therefore it is
reasonable to attempt to correlate PE with local structural
information26.

At low temperatures the motion of the atoms is of vibrational
nature and since PEs are related to a local mechanical instability of the
particle configuration it can be expected that the latter are associated
with quasi-localized soft modes27. Various studies support this view,
showing that the location of these soft modes are often, but not
always, related to the local arrangement of the particles11,12,17,27–39.

In view of the difficulty to identify the relevant structural features
that are responsible for the occurrence of PE, recent studies have used
machine learning approaches to identify a connection between these
two quantities16,40–43. Although these works have demonstrated that
this technique is indeed able to predict to some extent the location of
PEs, Richard and collaborators have recently shown that the quality of
these predictions is not always superior to the one of simple local
structural predictors and hence one concludes that at present we are
still lacking insight on the relevant quantity that is able to predict PEs15.

Although soft modes show a good correlation with plastic events,
one must recall that yielding is a cooperative phenomenon. Therefore
it is important to study not only the effect of individual modes, but
instead to consider the total vibrational field given by the weighted
sum over all the modes, since this will determine the displacement
field of all the atoms. In the present work we hence focus on the
eigenvector field for the different modes, and in particular study its
topological properties. The idea that topological properties might be
useful to understand certain thermodynamic and kinetic features of
glasses has been suggested only in recent years44,45. Subsequently
Baggioli et al. have put forward the relevance of topological properties

by showing that plasticity is mediated by topological features in the
non-affine displacement field of glasses under deformation39. In the
present work we find that the topological singularities of this field,
averaged over the modes, are closely related to the plastic events,
showing that the vibrational modes allow direct prediction of the
location of plastic transformations if the sample is sheared.

Results
Structure of topological defects in the eigenvectors
The system we study is a two-dimensional binary mixture of Lennard-
Jones particles, the interactions of which have been truncated at the
minimum. The liquid was equilibrated at a high temperature and then
cooled down, at constant volume, below the kinetic glass transition
temperature. Using a conjugate gradient procedure we determined
the local minimum of the potential energy and subsequently calcu-
lated the eigenvectors and vibrational frequencies ω. Two samples
have been produced: One with a moderate cooling rate and a second
one with a slow cooling rate. More details on the potential and the
simulations are given in theMethods and structural data is given in the
Supplementary Figs. 1 and 2.

In order to comprehend the evolution of the morphology of the
eigenvector field with ω, we show in Fig. 1 the vibrational modes for
different values of the frequency. (The vibrational density of states is
shown in panel (f).) For low frequencies, panel (a), the mode is com-
posed of a multitude of swirls that have roughly the same size. (In
Supplementary Fig. 4 we show that at very low frequencies the
eigenvector does show a regular pattern, as expected for a homo-
geneous elastic solid.) By calculating from the eigenvector field the
topological charge, i.e., the winding number, we can identify the
location of the singularities (topological defects, TD) of the field (see
Methods) and these positions are included in the graph as well, with

Fig. 1 | Normal modes eigenvectors and topological defects. Sample produced
withmoderate cooling rate. a–d Snapshots of the normalized eigenvector atω = 1.5,
2.5, 5, and 15, respectively. The green box in panel a shows the location of the zoom
of panel e. Note that in a–d the magnitude of the eigen-vectors in different modes
are shown on the same scale (amplified 150 times for visibility). e Four + 1 defects

(vortex, red) and two− 1 defects (anti-vortex, blue). The big arrows mark the chir-
ality of the defects. f The number of topological defects per degree of freedom, 2N,
as a function ofω (left scale) for two system sizes. The solid line is a power-law with
exponent 2.0. Right scale: Vibrational density of states.
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red and blue points marking charges +1 (vortex) and − 1 (anti-vortex),
respectively; see also panel (e).

A closer inspection of Fig. 1a demonstrates that at low ω the
positions of the TD are not random but correlated: While TDs with the
same sign have the tendency to stay away from each other, TDs with
opposite sign seem to attract each other and below we will quantify
this behavior in more detail. Note that two neighboring swirls with
opposite sign of phase chirality (direction of rotation of the vortex)
have an interface that is not frustrated, Fig. 1e, while if they have the
same sign of chirality, they are not compatible with each other and
thus at their interface there will be a TD with charge − 1, Fig. 1e.

If ω is increased, panels b–d, it becomes increasingly difficult to
identify isolated zones in which the atoms move in an coherent man-
ner, i.e., the swirls become ill-defined. It is, however, still possible to
identify the TDs and thus to recognize that their number increases
quickly with increasing frequency. Panel f shows the total number of
TD as a function of frequency and we find that at low ω this number
increases likeω2. This dependence can be understood by recalling that
for a continuous homogeneous elastic medium the number of max-
ima/minimaof a planewavewith wave-vectorq, i.e., an acousticmode,
increases like q = ∣q∣. If k plane waves having the same q but different
orientations are superposed, this will give rise to k ⋅ qminima/maxima.
Since inD dimensions the number of modes increases like k∝ qD−1, the
number of minima/maxima scales like qD and because ω∝ q, this
rationalizes the ω-dependence of the number of TD (see also Fig. 2d
and Supplementary Fig. 4). At ω ≈ 3.5 this quadratic dependence
crosses over to a weaker one, most likely because the glass can no
longer be considered as an elastic medium. This observation is in
harmony with the fact that at this frequency also the density of states
ceases to show the linear dependence on ω expected from the Debye-
law, see Supplementary Fig. 3b. This coincidence also hints a possible
relation between the TD and the so-called boson peak6, i.e., this peak
might be related to the fact that on length scales smaller than the
corresponding acoustic modes the notion of homogeneous elasticity
is no longer applicable. The details of this possible connection should
be investigated in future work.

The positional correlation observed in Fig. 1a between the
defects can be quantified by means of the corresponding partial
radial distribution functions g++(r), g+−(r), and g−−(r)2, Fig. 2. For lowω
one notices that g++ has a correlation hole at small r, followed by a
small peak at r ≈ 9, signaling the typical distance between these TDs,

in agreement with the fields shown in Fig. 1. With increasing ω this
peak shifts to smaller r and one finds that at small and intermediate
ω, its location is proportional to 1/ω, see panel d, which is consistent
with the q-dependence of the acoustic modes discussed above. This
proportionality holds up toω ≈ 4.5, at which point it crosses over to a
weakerω-dependence. In this range ofω, g++ displays several wiggles,
indicating that the TD with charge +1 form a structure that is remi-
niscent of the one of a hot liquid, i.e., these TDs have the tendency to
repel each other. For g−−(r), panel b, we find no nearest neighbor
peak at low ω, showing that these TD behave like an ideal gas. Only if
the frequency reaches ω ≈ 7.5 one notices a peak at around r = 5, but
at larger r no further wiggles are observed. This indicates that
negative TDs are clustered but do not form a structure that are
liquid-like. If ω is increased even more, the correlation function
becomes again flat (except for a correlation hole at r = 0), showing
that at high frequencies these TDs become completely uncorrelated.
These observations for g−−(r) indicate that the relative arrangement
of the − 1 defects is significantly less structured than the one of the + 1
TD and below we will discuss the origin of this behavior.

The correlator g+−(r), panel (c), shows a dependence on r and ω
that is very different from the two other correlators. Independent ofω
onefinds a strongpeak at small r’s, demonstrating that thepositive and
negative TD attract each other. In view of this strong correlation one
can conclude that the positive TD form a liquid-like structure and that
it is the attraction between the positive and negative TD which makes
that the latter become correlated aswell, although to a lesser extent, in
agreement with the data in panel b.

Correlation between topological defects and plastic events
Since TDs are singularities in the field of the eigenvector, it can be
expected that they are directly related with the heterogeneous
mechanical response of the system under shear. To explore this con-
nectionwehave determined theplastic instabilities of the sample if it is
put under an athermal quasi-static simple shear, see Methods for
details. For a sheared configuration at strain γ we calculate D2

min, the
field of non-affine displacement of the particles between two con-
secutive configurations (having a difference in strain of0.05%)9. After a
drop in the stress, signaling that a plastic event has occurred, we
identify the particles that have a highD2

min (top 5%, see Supplementary
Fig. 6), and associate these particles to a PE. The location of these PEs
can be correlated with the position of the TDs by means of a

Fig. 2 | Structure of the topological defects in the eigenmodes. Sample pro-
ducedwithmoderate cooling rate. a–c: Pair correlation functions for +/+, − / − , and
+/ −defect pairs for different values of ω. Curves for ω > 2.5 are shifted upward by

multiples of 0.5. d Inverse of the position of the first peak in g++(r) as a function of
frequency. The straight line is a linear fit to the data at low ω.
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corresponding radial distribution function gαPE(r), where α∈ { ± 1}, see
Methods. In Fig. 3a, b we show the resulting correlation for different
values of ω and one recognizes that g+PE(r) is basically flat, implying
that there is only very little correlation of the PE with the positive TDs,
and this holds for all frequencies. The only noticeable feature in the
curve is the small peak at around r = 2 ifω is small, the origin ofwhich is
discussed below.

In contrast to this, g−PE(r) shows at small and intermediate values
of ω a marked peak at small r, panel b, demonstrating that PE are
closely related to low-frequency TDs with negative charge. This results
rationalizes also the presence of the small peak found at r ≈ 2 in g+PE(r)
since fromFig. 2c we know that TDswith positive and negative charges
are significantly correlated and hence the correlation between nega-
tive TDs and PEs will induce a correlation between positive TDs
and PEs.

Panels a and b show that TDs and PEs are correlated if ω is less
than ωmax = 3:5, while for higher frequency there is no correlation.
(Note that in panel (b) we find a non-trivial correlation even for fre-
quencies that are not small, e.g., ω = 1.5, which indicates that even
under quasistatic shear conditions modes at finite frequencies are
related to PEs.) We have therefore averaged all gαPE(r) in the range
0≤ω≤ωmax in order to get a correlation function that takes into
account all the TDs at low frequencies. Since the number of TDs
increases quadratically with ω, see Fig. 2d, we have weighted the
individual gαPE by ω−2. The resulting correlation functions gav

+PEðrÞ and
gav
�PEðrÞ are shown in panel c and from this graph one clearly recognizes

that the negative TDs are significantly correlatedwith the PE in that the
peak at small r rises above 2.5, which means that there is a more than
two-fold increase of the probability that a PE occurs close to a TD as
compared to a uniform distribution.

Since these results have been obtained by considering all the
modes up to a cut-off frequencyωmax = 3:5, it is of interest to check to
what extent the correlation between the TDs and PE depends on the
frequency of the mode. Therefore we show in Fig. 3d the probability

that a PE is close to a TD as a function ofω. In practicewe used a cut-off
distance between TD and PE of 1.6, i.e., the location of the first mini-
mum in the radial distribution function between the particles, see
Supplementary Fig. 2. The graph shows that the probability is high for
small value of ω and then decreases rapidly if one approaches the
threshold 3.5, the value we have used to calculate the curves in panel
(c), thus justifying this choice. For larger values of ω the probability
stays at around 0.3, a value that is determined by the spatial density of
the PE, i.e., these high frequency modes are not relevant for the
occurrence of the PEs.

The results presented so far are for a strain of γ =0.025. Also
included in panel d is the corresponding data for γ = 0.05, a value that
is close to the yielding point of the system, see Fig. 4b below, and one
recognizes that also in this case there is a pronounced increase of the
probability at small ω, i.e., the negative TDs for small ω correlate well
with the PE and this correlation disappears for ω ≳ 3.5, indicating that
this value is independent of the strain. Note that this threshold is also
close to the frequency at which the number of TDs as a function of
frequency starts to show the first deviation from the quadratic law
found at low values ofω, see Fig. 1f. Furthermore it also coincides with
the frequency at which the density of states starts to show deviations
from the Debye regime, see Supplementary Fig. 3b, i.e., above this ω
the nature of the vibrational modes is no longer acoustic and starts to
become affected by the disorder of the structure. Therefore one
concludes that this threshold does indeed reflect a relevant frequency
for the plastic yielding of the sample.

In order to have a visual impression of the correlation between the
location of the TDs and the PEswe present in Fig. 3e the charge density
field of these TDs (color map) as well as the location of the PEs (sym-
bols). The graph demonstrates the strong correlation between zones
with a high density of − 1 TDs and the PEs. (This strong correlation
becomes even more visible if we just consider the − 1 TDs to generate
the colormap, see Supplementary Fig. 7.) One also notices that basi-
cally all zones of high density do contain PEs, i.e., the negative TDs are

Fig. 3 | Spatial correlation between the location of topological defects and the
plastic events. Sample produced with moderate cooling rate. a and b: Correlation
functions between plastic events at strain γ = 2.5% and topological defects with
positive charge, a, and negative charge, b, for different frequencies. c: Weighted
sums over ω of g+PE(r) and g−PE(r). The weights are ω−2 and all modes up to ω = 3.5
have been taken into account. d Probability that a PE has a distance less than 1.6
from a negative/positive PE (see text). Two values of the strain γ are shown.

e Charge density field of the TDs (color map) and of the PE (symbols) at strain
γ =0.025. The density field, in units of charge per unit area, has been obtained by
averaging the TDs over all frequencies up to ωmax = 3:5, using a weight factor ω−2,
and a subsequent Gaussian smoothing function of width 4. PE resulting from a
shear in the positive and negative x-direction are marked by filled and open sym-
bols, respectively.
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indeed able to predict the location of the “soft spots”, the points at
which the sample is yielding. Note that we have done the simple
shearing in the + x and the − x direction and, as expected, the location
of the corresponding plastic events (filled and open symbols) are not
quite the same.However, both types of PEs do showagood correlation
with the zones of strong negative charge, i.e., to a first approximation
the tensorial character of the plastic response can be neglected. (We
also mention that shearing the system in the y-direction gives rise to
PEs that are spatially strongly correlated with the ones shown in panel
(e), indicating that the direction of the shear does not play a very
important role in our case, see Supplementary Fig. 8.) One also
recognizes clearly the anti-correlation between the PE and the positive
TDs (zones in red), showing that the former are forming “hard spots” in
the samples that are stable under a shear transformation. This result is
reasonable since the positive TDs correspond to the points of the
vibrational excitations at which the vibrational amplitude goes
smoothly to zero and hence it can be expected that the nearby parti-
cles will not be affected strongly by the external shear. This rational is
consistent with earlier findings that particles with larger amplitude of
the vibrational eigen-vector contribute more to the non-affine defor-
mation and thus irreversible rearrangements11,12. Finally, we mention
that the good correlation between the position of the negative TD and
the plastic events are also found if the former have been obtained at a
finite strain, see Supplementary Fig. 9. This shows that our results are
robust with respect to minor modifications of the protocol.

The results presented so far correspond to the strain γ = 2.5% and
a glass sample that was generated using a moderate cooling rate. To
investigate how the correlation between PE and TD depends on the
applied strain we identify for a given value of γ all particles that are in
the top 5% of D2

min and calculate for these particles the value of the

charge density field of the TD, thus giving an average charge CðγÞ. This
average charge is strongly negative if there is a good correlation
between the PE and the − 1 TD, while C =0 if there is no correlation.
Figure 4a shows C as a function of γ. For the sample that has been
produced with a moderately cooling rate (red curve) the value of C
increases steadily with increasing γ, showing that the correlation
between the PE and TD is high at small strain and then gradually dis-
appears if the yielding strain is approached, see stress-strain curve in
panel (b). For the sample that has been well annealed, blue curve, the
value ofC at small γ is very close to the one of the first sample, showing
that the quality of the correlation does not depend strongly on the
nature of the glass if the strain is small. For intermediate strains the
value of C changes only weakly but once the yielding strain is
approached, it rapidly goes to zero, i.e, the correlation is completely
lost. Figure 5 displays the maps of the TD charge density field for the
two glass samples. The different panels show the location of the PE at
the indicated strains, allowing to get a visual perception of the corre-
lation as a function of γ. Hence Figs. 4 and 5 show that the local TD
charge density is an indicator that correlates indeed very well with the
location of the PE, independent of the strain or the annealing of
the glass.

Discussion
The identified correlations between the location of the topological
defects and the plastic events indicate that these quantities are
intimately related to each other. Zones of the sample which have a
high density of defects with topological charge + 1 are stable
towards shearing since in their vicinity the amplitude of the vibra-
tional excitations are small and vary smoothly in space, i.e., the
application of a local strain will not affect significantly these vibra-
tional modes and thus will not give rise to a plastic event. This is also
the case for the boundary between two neighboring regions of +1 TD
with opposite chirality, since also for this geometry the flow field is a
smooth function in space, see Fig. 1e. For zones having a high density
of TD with topological charge − 1, the vector-field of the eigen-
modes will instead be strongly modified if one applies a local strain,
thus making it highly probable for a plastic event to occur. This high
susceptibility can be understood by noting that the geometry of this
vector field has similarities to the motion of a particle close to a
saddle-point, see Fig. 1e. This makes that a slight perturbation in the
potential energy landscape of the system will destabilize the parti-
cles in the vicinity of this TD, i.e., lead to a plastic event. We also
point out that the geometry of the vector-field close to a − 1 TD is
very similar to the displacement field of a so-called T1 event as dis-
cussed by Falk and Langer9, i.e., the plastic events that are con-
sidered to be relevant for the yielding of amorphous systems. This
observation is thus further evidence that the TD are indeed relevant
indicators for the location of PE. Note that this connection between
TD and PE can be expected to hold only if the local shear is indeed a
smooth function in space, i.e., if the sample can locally be described
as an elastic medium. This is only the case if the length scales con-
sidered are sufficiently large, which in turn rationalizes our finding
that the correlation between PE and TD is pronounced if the distance
between the TDs is larger than the lengths scale on which the system
can support acoustic phonons, while for smaller scales the correla-
tion is lost. (This is also coherent with the findings from ref. 13 in
which best results were obtained once the size of the probe region
were such that continuum mechanics can be applied.) One inter-
esting aspect of our results is thus the fact that the indicator we have
introduced here is neither local nor long-ranged since it is related to
a weighted average of modes that have different characteristic
length scales. This observation might rationalize the finding that
some of the indicators studied before, and that were either purely
short-ranged or intermediate range, did not give satisfactory pre-
dictions for the location of PE15.
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Our results also shed light on the previous studies in which
machine-learning approaches have been used to predict the
location of PE16,40–43,46. Despite the success of these approaches,
the understanding on the physical origin of these soft spots has
so far not really been elucidated and our findings do now allow us
to interpret these zones in terms of a simple physical quantity.
Note that in contrast to previous studies, refs. 30,31,38,39, we do
not have to determine the normal modes as a function of the
strain in order to predict the location of the PE. Instead this
location is obtained directly from the normal modes at strain
zero, i.e., it is a purely structural quantity in the unperturbed
system. This feature should thus permit to make headway with
analytical calculations that aim to describe the yielding of amor-
phous systems and hence to obtain a better understanding of this
important problem. Furthermore it will also be interesting to
probe how the topology of the vibrational modes at strain zero
investigated here are related to the topological defects of the
displacement field at finite strain, since the latter have been
found to correlate well with the location of the plastic events39.
The evolution of the vibrational modes with strain should thus
allow to gain a deeper understanding of yielding, and notably on
the difference between ductile and brittle fracture. While in the
present work we have focused on the properties of the atoms,
some recent studies on amorphous systems have suggested that
also the electronic degrees of freedom show some interesting
features related to topological defects of the wave-functions47.
How these defects are related to the ones investigated here is an
open question which should be addressed in future studies.
Finally, we mention that the approach presented here can in
principle be generalized in a straightforward manner to three-
dimensional systems since also in this case the eigen-vector field
can be computed easily. Subsequently one can determine the
locations of the topological defects, which in this case will be
lines48, and see whether they correlate with the position of the PE

of the sheared sample. This approach might thus be an interest-
ing alternative to other methods that have been proposed to
predict the location of PE in 3D16,49.

Methods
MD simulation
The two-dimensional glass former we study is an equimolar binary
mixture of particles with size σ1 and σ2 that interact via a truncated
Lennard-Jones potential:

uabðrÞ=4ε
σab

r

� �12
� σab

r

� �6
� �

+Cab: ð1Þ

Here σ12 = (σ1 + σ2)/2 and the constant Cab ensures that uab = 0
at rcut = 21/6σab, so the potential is purely repulsive and continuous
at the cutoff distance. The size ratio was set to 1.414 to prevent
crystallization50,51. A total of N = 10000 (or N = 1250) particles with
the mass ratio m1=m2 = ðσ1=σ2Þ2 were enclosed in a square box of
length L = 115.47 (number density is 0.75) with periodic boundary
conditions. The units of length, mass, and energy are σ1, m1, and ε,
respectively. Time and temperature are in units of τ = σ1

ffiffiffiffiffiffiffiffiffiffiffi
m1=ε

p
and ε/kB, with kB the Boltzmann constant. The time step of inte-
gration was 0.001τ. We first equilibrated the system in the liquid
state at T = 5.0 during 106 MD steps and then quenched it to the
final temperature T = 0.1 within 107 time steps using a linear
cooling schedule, after which we annealed the sample for another
106 MD steps. The Supplementary Fig. 5 shows that for this sys-
tem the mode-coupling temperature is around TMCT = 1.09, i.e.,
our initial temperature is about five times higher. The cooling rate
used to produce our sample makes that the glass-former falls out
of equilibrium at around TMCT, i.e., at a temperature at which the
dynamics is already quite sluggish. In order to make sure that the
results presented for this sample are not affected in a significant
manner by this cooling rate, we have repeated the analysis for a

Fig. 5 | Locationof theplastic events andmapof theTDchargefield.Mapsof the
charge field of the TD, including the PE at different values of strain (stated in the
panels). The filled and open symbols show the location of the plastic events when

the sample is sheared in the positive and negative x-direction, respectively. Panels
(a–c) are for the sample quenched to the glass state within 107 time steps and (d–f)
for the sample that was cooled more slowly (109 time steps).
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sample that has been cooled 100 times slower (109 time steps for
the quench).

Normal modes
The zero-temperature glass was generated by a conjugate gradient
energy minimization process, and the vibrational normal modes were
obtained by diagonalizing the dynamical matrix.

Topological defects
To identify the topological defects of an eigenvector field ðexi , eyi Þ,
i = 1,… 2N, we first assigned an angle θð r!Þ on every site r! of a
100 × 100 square lattice superposed to the sample. (We have checked
that a 120 × 120 grid does not change the main conclusions presented
in the main text.) This angle θð r!Þ is defined to be

tanθ r!
� �

=
X
i

w r!� ri
!� �

eyi =
X
i

w r!� ri
!� �

exi , ð2Þ

where ri
! is the location of particle i, and wð r!� ri

!Þ is a weight func-
tion (in practice a Gaussian52,53: wð r!� ri

!Þ= expð�∣ r!� ri
!∣2=σ2Þ with

σ = 1). Hence this procedure allows to define a map from the eigen-
vectorfield, given at thepositions of theparticles, to a regulargrid. The
topological defects were then identified by calculating the line integral
of∇ θ over a closed path on the lattice giving 0, 2π, or− 2π if the loop
contained no, a + 1 TD, or a − 1 TD, respectively. The location of a TD
was obtained by identifying the center of the smallest square with a
non-zero value of the line integral.

Plastic events
The athermal and quasistatic shear was realized by shearing the
simulation box by a small strain increment Δγ and subsequently
minimizing the energy of the configuration with a conjugate gradient
algorithm. This procedurewas repeated until the global strain reached
γ = 2.5%, usingΔγ =0.05%, (and 5%, usingΔγ =0.1%), the strain atwhich
the data in Fig. 3 is shown.

The locally irreversible rearrangements of particles in the glass are
evaluated by the non-affine displacementD2

min introduced in ref. 9 and
which is defined as the minimum of

D2
i =

1
Ni

X
jðiÞ

r!jðγÞ � r!iðγÞ � Fi × ð r!jðγ � ΔγÞ � r!iðγ � ΔγÞÞ
h i2

, ð3Þ

where the index j(i) runs over all the particles that are nearest neigh-
bors of particle i (thus the distance is less than 1.6, the firstminimumof
the total pair correlation function), rj

!ðγÞ denotes the position of par-
ticle j after the minimization of the box that is sheared by γ, and Ni is
the number of nearest neighbors of particle i. The matrix Fi is chosen
such that it minimizes D2

i and it can be calculated based on the spatial
coordinates of the corresponding particles9.

Correlation function between the TDs and the PEs
For each eigenmode κ = 1, 2, . . . , 2N, we define the radial pair correla-
tion function gκ,αPE(r) between the TDs and PEs, with α∈ { − 1, + 1}, as

gκ,αPEðrÞ=
L2

2πrNTDNPE

XNTD

i = 1

XNPE

j = 1

δ r � ∣ r!ij ∣
� �

: ð4Þ

Here NTD and NPE are the number of TD of the mode κ and the
number of particles associated to PEs, respectively, and rij is the dis-
tance between the TD i and a particle in the PE j. The average

correlation function gαPE(r) is then given by

gαPEðrÞ=
P

κgκ,αPEðrÞ=ω2
κP

κ1=ω2
κ

, ð5Þ

where the sum over κ runs up to the cut-off frequencyωmax defined in
the main text.

Data availability
The datasets generated during and/or analysed during the current
study are available from the corresponding author on reasonable
request.
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